
Conditional Headers and Footers
by John Mark Osborne
www.databasepros.com

A tremendous amount of reporting power has been packed into FileMaker 
Pro with an incredibly easy-to-use interface. The power and simplicity behind 
adding and deleting parts to organize your pages almost makes it too easy 
to create a sophisticated printed report. Unfortunately, there is no way to 
attach a calculation formula to a part much like you can with Access 
Privileges to create conditional records. Either a part exists or it doesn't. 
While it is possible to slide through most parts, this doesn't really help 
unless you can create a field that is conditional. With sliding turned on, the 
problem becomes even more complex because you never know how many 
records will appear on each page. Creating a calculation that adjusts itself 
dynamically to the number of records is crucial to this technique.

Dynamic programming is at the core of the Philosophy of FileMaker. Within 
reason, it is wiser to design FileMaker with the assumption that fields, 
layouts, groups and other pieces of the FileMaker puzzle will be added at a 
later time. If your solution can adjust to the newly added objects, you don't 
have to remind yourself how a script, calculation or technique works to 
program in the new object. It just works! Your clients will be much happier 
because you don't have to bill them for additional work and you can move 
onto exciting new projects instead of spending all your time maintaining a 
system.

A Good Example

This is a tough technique to grasp unless you've worked with a lot of 
subsummary reports. It's not complex because there are long formulas. 
Rather, the technique is complex because you need to have a good 
understanding how FileMaker works with records inside of parts. In order to 
make this technique easier to understand, let's use an example that should 
be familiar to everyone reading this article. Let's assume you have a 
standard invoicing solution with an invoices, products and line items files. 
When printing an invoice, you don't print from the invoices file because 
portals weren't designed by FileMaker, Inc. to be printed. Portals don't slide 
in all scenarios and don't page break gracefully. Instead, you use the Go to 
Related Record script step to locate all the related records in the line items 
file and print from the line items file. As a general rule, it is almost always 
best to print from the child file rather than the parent if multiple related 
records need to be printed.

http://www.databasepros.com
http://www.databasepros.com


Reverse relationships bring in any data not contained in the line items file. 
Therefore, it is important to make sure the line items file contains the key 
field from any file you want to borrow data. In this example, the invoice ID is 
contained on every record in the line items file because a portal was used to 
enter the products. All you have to do is create a relationship to the invoice 
file originating from the line items file using the invoice ID as the key.

This all works flawlessly until you have a two page invoice. You could place 
the invoice total at the end of the second page using a trailing grand 
summary part. This works great as long as you want the total to appear 
after the last record which could place the total in the middle of the page. 
Many systems place the totals at the bottom of the last page so they are 
easy to find in a consistent location. All of a sudden, the problem is not so 
easy for FileMaker to handle!

Conditioning a Footer

The first calculation you'll need is Rec_Num in the line items file. It is a 
simple formula that returns the Status(CurrentRecordNumber). Make sure it 
is set to unstored in storage options or it will not update properly (see Figure 
1). This is true for any Status or Design function that is placed into a Define 
Fields calculation. Status functions were designed for scripts and only update 
when called. If a Define Fields calculation only contains a reference to a 
Status function, it will never update beyond the status available at the time 
you created the calculation field or when the record was created. If you 
make the calculation field unstored, the calculation will recalculate every 
time the screen refreshes. The screen refreshes every time the database 
changes records, layouts, files or modes. Otherwise, the only other time a 
Define Fields calculation field containing a Status function will update is if a 
field referenced in the formula is modified. While this may work in some 
situations, most scenarios require the result to update as the status 
changes.

Figure 1: Status(CurrentRecordNumber) - Make sure the Rec_Num 
calculation field is set to be unstored or it won't update properly.



There is only one Status function that doesn't need to be unstored. That 
function is Status(CurrentRecordID). The Record ID is defined when a record 
is created and can't change. Therefore, there is no need to update the 
calculation result. There are also several Status functions that will never 
update properly even when they are set to unstored. One example is 
Status(CurrentFieldName). You might want to create a user interface feature 
that displays the selected field in a calculation so the user knows what to 
type without looking where the cursor currently is. Unfortunately, tabbing 
from one field to another is not enough to refresh the window and the 
calculation will not update.

Next, create a summary field in the line items file titled Max_Num that 
returns the maximum of the Rec_Num field. Comparing the Rec_Num and 
Max_Num fields enables other calculations to determine the last page of the 
report and display a conditional result. The following calculation shows or 
hides the result depending on the currently selected page. The formula is a 
simple Case statement comparing the Max_Num and Rec_Num fields.

Case(

Max_Num = Rec_Num, 

Total, 

TextToNum("")



)

The Total field referenced in the formula is a simple summary field that totals 
the extended price. The TextToNum function is used to prevent a zero from 
appearing as the null result for the formula. The zero null result can be 
hidden via the Number Format dialog but this technique is better so you 
don't have to format the field on every layout where it is needed. In 
addition, this technique can be used with Date and Time results in order to 
prevent a question mark result. Just use DateToText("") or TimeToText("").

How it Works

At first, the Total [Cond] formula is very short and seems very easy to 
understand! The difficult part is understanding what values are being 
compared. This requires a good understanding of how records are handled in 
relation to the different parts. Simply put, the footer part displays values 
from the last record on the page. When the Max_Num and Rec_Num field 
are compared, they only equal each other on the last record. Since the 
footer part displays the last record on the page, only the last page of the 
report displays a value for the Total [Cond] formula. It's really that simple.

A More Complex Example

Subsummary reports in FileMaker are sophisticated yet easy to implement. 
However, there are a few features that would be nice to add. A common 
occurrence in a report is for the records within a single subsummary 
category to break across a page. Unfortunately, a subsummary part has no 
option for repeating the fields or objects within it when the records it 
subsummarizes span multiple pages. The result is a listing of records without 
a subsummary title.

One solution is to add a header part that replicates the information found in 
the subsummary. Unfortunately, this creates another problem. If the header 
and subsummary parts both display at the top of the same page, you get the 
same information twice. This solution gets around the problem by creating a 
smart header. Instead of just placing the data or fields from the 
subsummary part in the header part, conditional calculations are utilized. 
These calculations determine whether the record at the top of the current 
page is a continuation from the previous subsummary category or the 
beginning of a new subsummary part.

What you Need



The first calculation you will need is the same as the previous example: 
Rec_Num. It is a simple formula that calculates the 
Status(CurrentRecordNumber). Make sure it is set to unstored in storage 
options. Next, create a summary field titled Min_Num that returns the 
minimum of the Rec_Num field. These two fields will be incorporated into 
each calculation field that replicates the data from the subsummary part.

The conditional calculation below shows or hides the result depending on 
whether the subsummary part is a continuation from the previous page. This 
formula comes from an example that summarizes makes of cars by their 
manufacturer. Here is the formula for Manufacturer_Header:

Case(

GetSummary(Min_Num, Manufacturer) <> 
Status(CurrentRecordNumber), 

Manufacturer

)

The GetSummary function is like a subsummary report but in a calculation 
field. It uses a summary field and a break/sort field to summarize values for 
a group of records within the current found set. Let's look at the values 
displayed by a report on car manufacturers (see Figure 2 and 3) to better 
understand how the formula creates a smart header. Start by studying the 
GetSummary and Rec_Num fields down the right side of the report.

Figure 2: First Page of the Report - Notice that the GetSummary and 
Rec_Num fields in red are the same.



Figure 3: Second Page of the Report - Notice that the GetSummary and 
Rec_Num fields in red are different.



The GetSummary calculation field is simply the GetSummary portion of the 
formula shown above. The values all come from the same fields but the color 
of the result changes depending on the part. Red indicates the fields are 
located in the header part, blue shows the results from the body part and 
green is the result from the subsummary part.

Notice that the GetSummary and Rec_Num fields (in red) equal each other 
on the first page but don't equal each other on the second page. When you 
place a field in a header part and preview or print, it displays a value from 
the first record on the page. Therefore, the Manufacturer_Header calculation 
field is comparing values from the first record on the page. The 
Status(CurrentRecordNumber) is different on every record but the 
GetSummary function returns the same minimum value on every record 
within each set of records organized by the same break value. If these two 
values equal each other, the first record on the page is the first record in the 
subsummary part and the calculation should return a null value. If these two 
values do not equal each other, the first record on the page is NOT the first 
record of the subsummary and the calculation should return a value.

Considerations

One drawback of this technique is that header parts do not support all sliding 
features. Whenever the calculations in the header part return a blank result, 
it would be nice to reduce the size of the header part. Unfortunately, 
reducing the size of the enclosing part is not possible in a header or footer 
part. The result is a blank space at the bottom of the header which is 
noticeable when you compare a page that displays results for these 
calculations versus a page that doesn't. This may or may not affect your 
decision to implement this solution. That doesn't mean you shouldn't study 
the technique. You never know how you can apply the knowledge from one 
technique to another solution. Learn as much as you can about FileMaker 
and you will be rewarded in the long run.


