
22 FILEMAKER ADVISOR - December/January 2006 FileMakerAdvisor.com

Ask any FileMaker Pro developer
what it takes to create a calendar

solution with event scheduling and
monthly, weekly, and daily views. The
first thing to pop to mind? It's most
likely a ton of complicated calculation
formulas and relationships. Opening
Define Database for your average

calendar solution presents a vast array of relationship
lines and table occurrences, not to mention page-
long calculation fields. One day, I decided to create
a simple calendar solution with all the same features
as commercial FileMaker Pro products. While I can't
describe the entire solution in a single article, I can
give you enough knowledge to create a variety of
different views and event scheduling with just a couple
relationships and simple calculations.

The tables
I use a GUI table interface to display the monthly,

weekly, and daily calendar views. The GUI table
is called VIEW and contains mostly global and
calculation fields. The VIEW table contains a single
record. I introduce the fields and table occurrences
inside the VIEW table throughout this article. For now,
just think of it as the interface portion of the calendar
solution.

The first data table is called DAYS and contains one
record for every day of the year you want to display
in your calendar. For instance, if you want to display
calendars for the years 2005 and 2006, the DAYS
table will contain approximately 730 records or 365
multiplied by two years (depending on whether there's
a leap year or not). The DAYS table has very few fields
so it doesn't balloon in size as you add more years to
your solution. And with one record for every day, it's
relationally sound, providing the flexibility to output
any type of report or create any type of query. Most
calendar solutions merely mimic the existence of

records through complicated formulas and a lot of
relationships, complicating input and output.

The second data table, EVENTS, contains one record
for every time slot. You can choose to have a time slot
for every 60 minutes, 30 minutes, or 15 minutes. I chose
15-minute increments to allow for the most flexibility
in scheduling an event. In a 24-hour day, there are 96
15-minute increments, translating to approximately
35,040 event records for each year. That's a lot of
records, but EVENTS minimizes the size of the table by
limiting the amount of data on each record.

In a test with 365 days and the corresponding events,
the size of the file is only one megabyte. Adding
another year of data doubles the size of the file. So, 10
years worth of dates and events creates a 10-megabyte
file. That's reasonable, but why not decrease the file size
by only creating event records as they're needed? The
advantage of creating a record for every 15 minutes in
a day, regardless of a scheduled event, becomes clear
when you see the flexibility and simplicity of displaying
calendar information. While adding event records
as needed lets you perform finds, print specialized
reports, and navigate from a find result to a calendar
view, you can't display the daily calendar as a graphical
representation of your entire day, much like you'd see
on a Palm device or a non-FileMaker Pro calendar
product such as iCal. Therefore, I chose to create records
for every time slot, regardless of whether there's a
scheduled event. If you decide differently, there will be
no difference when implementing this solution except
in the appearance of the weekly and daily views.

The data fields
I start with the fields where FileMaker Pro stores

data. FileMaker Pro only stores data in the DAYS and
EVENTS tables. As promised, there aren't very many
fields. The only field you must have in the DAYS table
is a date field, which I call "Date." The EVENTS table
is a little more complicated and requires several fields.

The Calendar Conundrum
Create a relationally sound calendaring system in FileMaker Pro 8 or 7. It's easier than you might think.

By John Mark Osborne, Database Pros president and owner & FILEMAKER ADVISOR technical editor

PRODUCTS FileMaker Pro 8/7

DATABASE DEVELOPMENT

Technical Editor John Mark Osborne is president and owner of Database Pros, offering the largest free FileMaker resource on the Internet. John
Mark is internationally recognized as the author of Scriptology, a speaker at the FileMaker Developer Conference and Macworld conferences, and
a trainer for the Professional Training series created by FileMaker, Inc. http://www.databasepros.com, jmo@filemaker.com

FileMakerAdvisor.com FILEMAKER ADVISOR - December/January 2006 23

You must have a date field titled "Date" to relate to the
DAYS table, a time field called "Time" to store the time
of each 15-minute increment, and a text field called
"Title" to store the title of a scheduled event. You create
other fields in the VIEW table, but you don't need any
other fields for the data tables.

Populating the tables
Before you create the relationships to display the

calendar views, you must populate the DAYS and
EVENTS tables with some data. The following script
and sub-script create day and event records for a single
year at a time. It's a greatly simplified script compared
to what I use in the commercial version of my calendar
solution, but I wanted to distill the script to the basics.
I figure most people will modify the script to suit
their particular needs, so just the guts of the script are
important. Here's the "Generate Days" script:

Show Custom Dialog ["Date"; "Enter the year you wish to
create"; VIEW::xStartYear]
Set Variable [$Date; Value:Date(1; 1; VIEW::xStartYear)]
Go to Layout ["DAYS" (DAYS)]
Freeze Window
Loop
 New Record/Request
 Set Field [Days::Date; $Date]
 Perform Script ["Generate Events"; Parameter: DAYS::
Date]

 Exit Loop If [Year(DAYS::Date + 1) = Year($Date) + 1]
 Set Variable [$Date; Value:$Date + 1]
End Loop

The Generate Days script asks the user to enter the year
for which they want to create days. This step converts the
year into a date corresponding to the first day of the year.
You should place the date into a script variable instead
of a global field because variables are much faster to
increment in a looping script. In addition, script variables
don't clutter up Define Database. If you have FileMaker
Pro 7, you can substitute global fields for script variables
and Set Field steps for Set Variable steps.

The script then selects a layout displaying records
from the DAYS table and freezes the window to speed
up the loop construct that follows. Record looping
scripts are slow because the screen redraws each time
FileMaker Pro displays a different record. The Freeze
Window script step dramatically increases the speed of
the looping script by eliminating screen refresh.

The loop is fairly basic, simply incrementing the $Date
script variable by one day and creating a new record
with the new date each time the loop repeats. FileMaker
Pro stores dates as a number of days, so you only have to
add a number to a date field. The result of the addition
is still a date, but it's increased by the number of days

DATABASE DEVELOPMENT

you added. There's no need to use the Date function if
all you want to do is add a number of days.

The loop finally exits when the year in the Date field
on the current record plus one day is equal to the year
of the script variable plus one year. This works because
the Set Field step that places the date on the new record
is before the Exit Loop If step, and the Set Variable step
that increments $Date is after the Exit Loop If step. In
other words, adding one day to the date on the current
record equals the year of the script variable plus one
only on the last record for the year, causing the loop to
exit. This creates one record for each day in the specified
year. Here's this script, which I call "Generate Events":
Go to Layout ["EVENTS" (EVENTS)]
Set Variable [$Time; Value:Time(0; 0; 0)]
Loop
 New Record/Request
 Set Field [EVENTS::Date; Get(ScriptParameter)]
 Set Field [EVENTS::Time; $Time]
 Exit Loop If [$Time = Time(23; 45; 0)]
 Set Variable [$Time; Value:$Time + 900]
End Loop
Go to Layout [original layout]

The Generate Events script is called from the Generate
Days script each time it loops. Every time you create a
day record, FileMaker Pro creates corresponding time slot
events for the day. Think of it as a loop within a loop.

The Generate Events script is basically the same as the
Generate Days script in the sense that it creates a bunch of
records with an incremented value. Each record gets the
same date as the DAYS table via a script parameter. The
time is incremented in 15-minute intervals by adding 900
seconds to the script variable. Time is stored in seconds,
so all you have to do is add a number corresponding to
the number of seconds to any time field to increase the
value. The loop exits when the $Time script variable
reaches the time of 11:45 pm. The result is 96 records for
each 15-minute increment in the specified day.

Month view
Displaying a month view requires you to create two

global fields in the VIEW table. You create the xMonth
and xYear global fields in the VIEW table, and you only
have to populate them through simple navigational
scripts that increment or decrement the month and
year or drop-down lists. I prefer drop-down lists to
navigational buttons simply because they allow more
flexibility and speed in selecting a month and year. The
only issue with drop-down lists is users usually like to
see the month name, but the relationships I create in the
following pages require a number representation of the
month. Here's a formula that translates a month name
into a month number:
Position("**JanFebMarAprMayJunJulAugSepOctNovDec";
Left(xMonth; 3); 1; 1) / 3

In general, the Position function returns the location
of one text string within another text string. You can
provide the text string by static text enclosed in quotes, a
field, or a function that returns a text string result. With

this formula, provide a string of the first three letters of
each month as the string to search or first parameter. You
only need to provide three letters to uniquely identify
each month name. The left three letters of the contents
of the xMonth global field determine the second
parameter, or the search string. The third parameter
tells the Position function to start searching at the
beginning of the first parameter. The fourth parameter
tells the Position function to find the first occurrence of
the search string or second parameter.

If xMonth contains "February," the Position function
locates "Feb" in the string of abbreviated month names
at the starting position of six characters. Notice in the
formula, the asterisks at the beginning of the string in
the first parameter. These can be any characters and are
used to pad the string so the positions of each month
name abbreviation return a position divisible by three.
In other words, "Feb" returns a position of 6 and is
divided by three to result in a 2, which corresponds to
the correct month number for February.

If you're really set on using buttons to navigate to the
next and previous months, here are some simple scripts
that modify the xMonth and xYear global fields. In this
case, the xMonth global field is a number type because
it holds month numbers and not month names. Here's
the script to navigate to the next month:
Set Field [VIEW::xMonth; Case(VIEW::xMonth = 12; 1; VIEW::
xMonth + 1)]
Set Field [VIEW::xYear; VIEW::xYear + Case(VIEW::xMonth =
1; 1)]

The script simply adds 1 to the month. When the month
reaches 1, the year is incremented by 1 as well. There's
one exception for the Set Field step that increments the
month. If the month reaches 12, the calculation has to
return 1 rather than 13. You can easily handle this with
a Case statement. To navigate to the previous year, you
can duplicate the above script and change some of the
values from 1 to 12 and some of the operators from plus
to minus. Here's the modified script:
Set Field [VIEW::xMonth; Case(VIEW::xMonth = 1; 12; VIEW::
xMonth - 1)]
Set Field [VIEW::xYear; VIEW::xYear - Case(VIEW::xMonth =
12; 1)]

If you want to decrease the number of scripts, you can
use a single script to handle next and previous months.
To accomplish this improvement, you must employ a
script parameter assigned at the button level to pass
the word "Next" or "Previous" to the script, combine
the Next and Previous scripts, and add an If statement
checking for the script parameter, like so:
If [Get(ScriptParameter) = "Next"]
 Set Field [VIEW::xMonth; Case(VIEW::xMonth = 12; 1;
VIEW::xMonth + 1)]
 Set Field [VIEW::xYear; VIEW::xYear + Case(VIEW::
xMonth = 1; 1)]
Else
 Set Field [VIEW::xMonth; Case(VIEW::xMonth = 1; 12;
VIEW::xMonth - 1)]
 Set Field [VIEW::xYear; VIEW::xYear - Case(VIEW::
xMonth = 12; 1)]
End If

24 FILEMAKER ADVISOR - December/January 2006 FileMakerAdvisor.com

The Calendar Conundrum

The next part of the process is to create the calculations
for the relationships. You create the calculations in the
VIEW table, so there's no overhead in the data tables.
The calculations determine the lowest and highest date
for the month based on the contents of the cMonth
calculation field (or xMonth field, if you used scripts to
navigate) and xYear global field. Here's the formula for
the MonthLow calculation:
Let(

FirstDay = Date(cMonth; 1; xYear);

FirstDay - DayOfWeek(FirstDay) + 1

)

The first part of the formula, where you transform the
xMonth and xYear global fields into a date using the Date
function, is pretty easy to understand. The result is the
first day of the user-specified month and year, which is
all you really need if you want a relationship to display
all the records for a particular month and year. However,
many monthly calendars show the entire first and last
week, regardless of the current month. In other words,
you see some of the days from the previous month at the
beginning of the current month, and some of the days
from the next month at the end of the current month.

The second part of the calculation aims to calculate the
number of days in the week preceding the first day of the
month. It does this by using a formula that determines
the first day of the month and then subtracts the day of
the week. Days of the week are numbered starting with
1 for Sunday and incrementing to 7 for Saturday. For
example, February 1, 2006, falls on a Wednesday, or the
fourth day of the week. Subtracting four days from the
first day of the month results in January 28, 2006. Since
the 29th is the Sunday of the first week, the calculation
adds one to the result.

The MonthHigh formula is virtually the same except
it adds days to the last day of the month. The last day of
the month is determined by adding 1 to the month and
subtracting 1 from the result. Subtracting one day from
the date result has been omitted because the calculation
adds days to the end anyhow. Here's the formula:
Date(cMonth + 1; 1; xYear) + 14

There's no need to determine the number of days in
the last week of the year. In a standard calendar display
of six weeks, there could be as many as two weeks
blank at the end of a February calendar if the first
day of February happens to be a Sunday. Therefore,
the formula adds 14 days to every month. There's no
need to determine the exact number of blank days at
the end of a month, as you'll see when I reveal the trick
for displaying the related records. The calendar simply
doesn't display extra days if they don't fit into the six-
week rows format.

Now take a look at the relationship for the month
view (figures 1 and 2). The calculation fields from the

The Calendar Conundrum

FileMakerAdvisor.com FILEMAKER ADVISOR - December/January 2006 25

VIEW table relate to the Date field in the DAYS table
using the less than or equal and the greater than or
equal operators. This lets all the dates that fall between
the calculated dates appear in a portal.

However, a single portal listing the results of the
relationship doesn't look much like a monthly calendar.
To get the calendar to display in six-week rows, you
need to use 42 one-row portals that all display a
different row of the relationship. When you fit all the
portals together, they look just like a monthly calendar
(figure 3).

A few more details
Figure 3 reveals a few details I haven't yet explained.

I'll start with the display of the day number because it's
the easiest to describe. All you must do is place the Date
field from the Month_DAYS table occurrence inside
each of the one-row portals. This displays the date for
each portal. Next, select the Date field and use the Date
item from the Format menu to change how the date
displays. You want to use a custom setting that only
displays the day from the Date field (figure 4). Don't
forget to empty the four entry fields to the right of the
pop-up menus; they contain commas and spaces you
don't need when displaying just a day number.

Highlighting the days from the current month is a
little trickier. First, it requires you to create a Container

field called "MonthHilite" in the VIEW table. This isn't
a global Container field; it's a regular Container field.
If you use a global field, the technique doesn't work.
Draw a small white rectangle using the FileMaker Pro
tool in layout mode. It doesn't have to be big, so use the
Object Size palette to resize it to one pixel by one pixel.
Cut the rectangle to the clipboard, enter browse mode,
and paste it into the Container field. Again, you should
only have one record in the VIEW table.

Next, create two new calculations in the VIEW table
very similar to the calculations you created in the

Figure 4: Date format dialog — Displaying the day number inside
each one-row portal is as easy as formatting the Date field to only
display the day number.

Figure 3: Finished monthly view — Here's an example of what
the month view might look like once all the one-row portals from the
same relationship are arranged on a layout.

Figure 1: Month view relationship — The month view relationship
relates the VIEW and DAYS tables using multiple predicates to display
an entire month of dates.

Figure 2: Month view key fields and operators — The MonthLow
and MonthHigh calculation fields from the VIEW table relate to the
Date field in the DAYS table using the greater than or equal and the
less than or equal relationship operators.

26 FILEMAKER ADVISOR - December/January 2006 FileMakerAdvisor.com

The Calendar Conundrum

previous relationships to display the one-row portals.
Here's the formula for MonthLowHilite:

Date(cMonth; 1; xYear)

This calculation only figures out the first day of
the month because you only want to highlight the
portals displaying days from the current month. So the
calculation for MonthHighHilite calculates the last day
of the month:
Date(cMonth + 1; 1; xYear) - 1

FileMaker Pro uses these calculations in a relationship
from the Month_DAYS table occurrence to the new
Month_Hilite_VIEW table occurrence based on the
VIEW table. The new relationship diagram is shown
in figures 5 and 6. You must index the results from
these calculations for the relationship, so you can't
create them as calculation fields because they're based
on global fields. You can't index calculations based
on global fields, summary fields, related fields, and
unstored calculations. The solution is to use the auto-
enter calculation feature with the option to uncheck
"do not replace existing value of field (if any)". Because
the calculations reference the cMonth and xYear fields,
any time the global or calculation field changes, the
calculation returns a new result.

The last step is to place the MonthHilite Container
field in each one-row portal. You want to make the field
as large as the portal so the color fills the entire portal.
The largest you can make the field, and still have it
display properly within the portal, is two pixels smaller
in height and width than the portal. You also want to set
the Container field to enlarge and uncheck the option
to maintain original proportions via the Graphic item
under the Format menu. This lets the one-pixel by one-
pixel rectangle fill the entire Container field.

Highlighting the current day is very similar to the
highlight for the current month. You need a Container
field called DayHilite with a small swatch of color in
it. FileMaker Pro displays the DayHilite Container
field through a relationship from a new field called
DateCurrent to the Date field in the Month_DAYS table
occurrence (figure 7). This is a simple relationship based
on the equals operator (=).

Because you must index the DateCurrent field, the
best solution is to auto-enter this calculation:
Evaluate(Quote(Get(CurrentDate)); [xMonth; xYear])

Figure 5: Highlighting portal rows with a relationship — The
new table occurrence for highlighting the days from the current month
is based on the VIEW table relating to the DAYS table using multiple
predicates.

The Calendar Conundrum

FileMakerAdvisor.com FILEMAKER ADVISOR - December/January 2006 27

Continued

IF YOU WANT TO:
 • Start or renew your

 FILEMAKER ADVISOR
 subscription

 • Get subscriber
 online access

 • Subscribe to
 another ADVISOR
 publication

 • Give a subscription
 to a friend or
 colleague

 • Order back issues,
 COMPLETE CDs or
 PROFESSIONAL
 RESOURCE CDs

 • Change your
 mailing address

 • Or if you have any
 other questions or
 concerns regarding
 your subscription

SUBSCRIBER
 Service

CALL TOLL FREE
800-336-6060
International 858-278-5600
Fax 858-279-4728
Help.Advisor.com

28 FILEMAKER ADVISOR - December/January 2006 FileMakerAdvisor.com

The Calendar Conundrum

The Evaluate function lets the xMonth and xYear fields
trigger the update of the current date. This ensures the
current date is updated whenever the calendar month
or year changes.

All you have to do is place the DayHilite Container
field in the one-row portals on the layer above the
MonthHilite field. This lets the DayHilite cover the
MonthHilite. It's also important to set the DayHilite
field to a transparent fill so the field doesn't block the
MonthHilite color except on the current day.

Other views
Displaying a weekly and daily calendar view is fairly

simple once you've mastered the monthly view. All
you need are new sets of table occurrences, but with
different key fields. For instance, the weekly view uses
the xWeekStart and xWeekEnd global date fields to
create a relationship from the VIEW table to the DAYS
table using the same less than or equal, and greater than
or equal relationship operators. The DAYS table is then
related to the EVENTS table based on the Date field
(figure 8).

If you create a layout showing records from the
Week_VIEW table occurrence, you can create a portal
displaying records from the Week_EVENTS table
occurrence. Much like the monthly view, you want to
split the portal into seven portals, each displaying 96
rows. Simple navigational scripts can update the global
fields to the next or previous week, or a drop-down
list can list the week number with calculation fields
transforming that week number into the beginning and
end week dates.

At this point, you can start to see what I mean by a
graphical representation of a day's events. When you
look at the whole week, you can see all the events that
occur at the same time in the same area on the layout.
In other words, if you have a recurring event over the
entire week, the events display in the same place on the
five adjacent portals so it's easy to identify your week
visually. If you display all 96 rows for each of the seven
portals, scrolling the window scrolls all the portals
together. If you just add your events as you need them,
one day might display the recurring event at the top of
the portal if the morning's events are light, and the next
day might list the recurring event at the bottom of the
portal if the morning contains a lot of events.

Creating a daily view is almost the same as a weekly
calendar except you only need one date field. The
xDate field from the VIEW table relates to the Date
field in the DAYS table, which relates to the Date
field in the EVENTS table. It's that simple. Displaying
the daily view requires a single portal displaying
96 rows.

Almost done
You can manually schedule events by entering them

into the records on the weekly or daily views. But for
more control, it's best to enter them with a script. You
can also add a calculation to the monthly view to display
a summary of the events for each day. You can even
add a table occurrence from the EVENTS table onto the
monthly table occurrence grouping to make each day
in the month view a scrolling portal of events. With a
little work, you can also make the calendar multi-user
capable by modifying each relationship to include the
account name. What I hope I have given you is a strong
foundation for a truly relational calendar solution. It's
up to you to add all the bells and whistles to make it
your own calendar solution.

Figure 6: Portal row highlight operators — The MonthLowHilite
and MonthHighHilite calculation fields from the VIEW table relate to
the Date field in the DAYS table using the greater than or equal, and
the less than or equal relationship operators.

Figure 7: Highlighting the current day — The Day_Hilite_VIEW
relationship lets a highlight color from a Container field display on the
current day.

Figure 8: Week view relationship — These table occurrences
create the relationships needed to display a particular week's events.

www.AdvisorEvents.com

Thank you...
ADVISOR MEDIA thanks these innovative companies for helping us

bring this event to the FileMaker community.

www.apple.com www.buddysystems.com www.excelisys.com www.productivecomputing.com www.wmotion.com

www.fmpromigrator.com www.24usoftware.com www.4sightfax.com www.beezwax.net

www.filebookslink.com www.fmforums.com www.fmptraining.com www.fmwebschool.com

www.mindfiresolutions.com www.cognito.co.nz www.moyergroup.com www.myfmbutler.com

www.newmillennium.com www.redstonesoftware.com www.soliantconsulting.com www.troi.com

Developer Conference 2005

© 2005 ADVISOR MEDIA, Inc. All rights reserved. FileMaker and the file folder logo are trademarks of FileMaker, Inc., registered in the U.S. and other countries. Advisor Media and Advisor.com are registered trademarks, trademarks or servicemarks of
Advisor Media, Inc. See www.Advisor.com/Trademarks. Other trademarks are the property of their owners.

www.gnext.co.jp www.isolutions-inc.com www.key-planning.com www.meta-comm.com

www.uams.edu www.vtc.com www.worldsync.com

.

®

www.chapsoft.com www.clevelandconsulting.com www.cnsplug-ins.com www.fusionplugins.com

