
Custom Functions
by John Mark Osborne

If you have FileMaker Advanced, you can create your own FileMaker calculation 
functions complete with function name and parameters using Custom Functions. The 
great thing about Custom Functions is you don't need to know C++. You simply use the 
FileMaker functions you are already familiar with to create your own named function. 
While you need FileMaker Advanced to create, edit or delete custom functions, anyone 
with a regular copy of FileMaker Pro can take advantage of them. But, what advantages 
do Custom Functions have over standard calculation formulas?

In general, there are four distinct advantages to be gained by using Custom Functions. 
The first and most common reason is to reuse code. Reusing code allows you easily to 
access a complex formula with a simple function name call much like the existing 
calculation functions that ship with FileMaker. If you need to change a Custom Function 
formula, the code is also stored in a central location so the changes flow out to every 
place you have referenced the Custom Function. That means you can update a Custom 
Function and any Script, Calculation Field, Conditional Formatting or Auto-Enter 
Calculation that references it will be updated with the new code.

A second reason to use Custom Functions is for system constants. For example, you 
could define sales tax for your state and when it changes, make the change in a single 
location. Wherever the Custom Function is referenced in your FileMaker solution, it will 
be updated with the new sales tax. This is very similar to reusing code except that there 
is no formula, just a constant value.

One of my favorite reasons for using Custom Functions is recursion. You can compare 
recursion to a looping script inside of a calculation. The calculation formula keeps 
calling itself over and over until it exits, all along building a complex result. 
Understanding recursion is probably the most difficult Custom Function concept so we'll 
explain by example in the upcoming sections.

The last advantage of Custom Functions is the ability to hide proprietary formulas from 
junior programmers. Concealing the family jewels inside a Custom Function will allow 
another programmer to access the function but not see the actual code. As long as you 
control what version of FileMaker your employees use, you can hide the genius behind 
your Custom Functions.

Since system constants and hiding proprietary code are self-evident in the descriptions 
above, we are going to concentrate on complex code reuse and recursion in the 
following examples.

A Simple Custom Function



Let's say you want a Custom Function for calculating the commission for sales people. 
and the formula looks like the following:

Round(MyTotalField * .08; 2)

While this is not a very complicated formula, it is possible you might need to use this 
formula in several different areas of your solution. If the commission rate changes, you 
will need to remember everywhere you used the formula and update it manually. If you 
are like me, I tend to forget every single place I used a piece of code. If you use a 
Custom Function instead, the code is stored in a central location so you can update it in 
a single place.

To define a Custom Function, all you need to do is copy and paste your existing code 
into a new Custom Function or type it in from scratch as you would any calculation 
formula. In addition, you will need to give your Custom Function a unique name and 
possibly define some parameters. In the example above, one parameter will need to be 
defined to substitute for the field reference. You might decide to name your Custom 
Function "Commission" and your parameter "Amount". Once this is done, your function 
call to the Custom Function will look like the following in your calculation dialog:

Commission(Amount)

Determining Age

While updating code is probably one of the most important advantages of Custom 
Functions, simplifying complex formulas is surely close behind. I like to use an example 
of an Age calculation that returns the age in years, months and days based on a date of 
birth field:

GetAsNumber(Year(Get(CurrentDate)) - 
Year(DOB) - Case(Get(CurrentDate) < 
Date(Month(DOB); Day(DOB); Year(Get(CurrentDate))); 1; 0)) & " 
Years, "

&

GetAsNumber(Mod(Month(Get(CurrentDate)) - 
Month(DOB) + 12 - Case(Day(Get(CurrentDate)) < 
Day(DOB); 1; 0); 12)) & " Months, "

&

GetAsNumber(Day(Get(CurrentDate)) - 
Day(DOB) + Case(Day(Get(CurrentDate)) >= 
Day(DOB); 0; Day(Get(CurrentDate) - 
Day(Get(CurrentDate))) < 



Day(DOB); Day(DOB); Day(Get(CurrentDate) - 
Day(Get(CurrentDate))))) & " Days"

Let's start by simplifying this formula with the Let function:

Let(

[@CurrentDate = Get(CurrentDate);
@DOB = DOB];

GetAsNumber(Year(@CurrentDate) - 
Year(@DOB) - Case(@CurrentDate < 
Date(Month(@DOB); Day(@DOB); Year(@CurrentDate)); 1; 0)) & " 
Years, "

&

GetAsNumber(Mod(Month(@CurrentDate) - 
Month(@DOB) + 12 - Case(Day(@CurrentDate) < 
Day(@DOB); 1; 0); 12)) & " Months, "

&

GetAsNumber(Day(@CurrentDate) - 
Day(@DOB) + Case(Day(@CurrentDate) >= 
Day(@DOB); 0; Day(@CurrentDate - 
Day(@CurrentDate)) < 
Day(@DOB); Day(@DOB); Day(@CurrentDate - 
Day(@CurrentDate)))) & " Days"

)

You can see how much easier the formula is to update a formula with the Let function if 
you move it to another solution where the date of birth field might have a different name. 
But, what if you have to change some of the code because you found a mistake. It 
would be much easier to reuse the code in a Custom Function so you can update it in a 
central location rather than trying to locate every instance of the code.

In addition, a Custom Function can make it easier to reference a large piece of code. 
The concept is similar to modular scripting where long scripts are divided into modules 
and connected with the Perform Script step. You can read the Custom Function name 
inside the calculation formula and get a pretty good idea what it does.

Once you place the Age calculation in a Custom Function, the call to the formula might 
look like this:



Age(BirthDate)

The Custom Function is almost like a chapter title for a reference book. You can decide 
if you want to see the code by visiting the Custom Function dialog or resign yourself to 
just looking at the reference to the code. If you have good names for your Custom 
Functions, you will likely never need to look at the actual code again. And, with 
FileMaker 11 Advanced, you can now import or copy/paste Custom Functions from one 
file to another!

It's important to remember when updating a Custom Function that it will update the live 
calculations on existing records like Calculation Fields, Record Level Access formulas 
and Conditional Formatting conditions, just to name a few. If you want existing records 
to keep their original values, make sure Custom Function calls are placed in an Auto-
Enter calculation or a Script.

Basic Recursion

Let's start with a simple example of recursion that is unlikely to inspire you. However, it 
is important not to skip this simple example because the code will be used as the basis 
for all other recursive Custom Functions in this article. So, here's what we are going to 
do. We want to create a Custom Function that repeats the contents of a field as many 
times as we specify. For example, if the name "John" is contained in a field and we ask 
it to repeat five times, the result will look like this:

John John John John John

Start by designing a new Custom Function called "RepeatText" with two parameters 
called "Text" and "Repeat". The Custom Function will contain the following formula:

Case(

Repeat > 0;

Text & " " & RepeatText(Text; Repeat - 1)

)

The call to the Custom Function to repeat the contents of the "Name" field five times will 
look like this:

RepeatText(Name; 5)

So, how does this recursion stuff work? It's actually quite simple. All you need is a 
conditional statement like Case or If. Inside the conditional statement, you test a 
scenario. When the test is true, call the Custom Function again. If the test is false, exit 
the Custom Function and return the result.



In our example, the test decides if the Repeat parameter is greater than zero. The first 
time the Custom Function loops, the value of the Repeat parameter is the number five. 
Since five is greater than zero, the condition results in a call back to itself but with one 
minor change; the Repeat parameter is reduced by one. Think of it as a counter in a 
looping script. Once the counter reduces enough to make the conditional statement 
false, the recursion ends and a result is returned.

As the recursive Custom Function is looping, it builds up a result in the memory stack. 
Each time the Custom Function loops, it concatenates the contents of the Text 
parameter with a space. It keeps adding to the result stack each time it loops, resulting 
in my name being repeated five times, separated by a space.

If you test this Custom Function in a FileMaker solution and take a careful look at the 
result, you'll notice a space at the end of the string. Think about it. That's what you 
asked it to do. But, that space could screw up your solution. Here's how you workaround 
the issue:

Case(

Repeat > 1;

Text & " " & RepeatText(Text; Repeat - 1);

Text

)

All we did was change the comparison test from a zero to a one and include a default or 
false result. So, the recursion happens one less time but the default result allows for the 
last concatenation of the text to be repeated minus the space.

Phone Formatting

Now that you understand the basics of recursion, let's do something useful with 
recursive Custom Functions. Formatting a phone number field has always been a 
common solution in order for the formatting to be consistent across all records. Back in 
the FileMaker 6 days, developers used a calculation field layered on top of a data entry 
field to format a field. With FileMaker 7, you could eliminate the extra field using an 
auto-enter calculation with the option to "do not replace existing value of field (if any)" 
unchecked. Even better is a recursive Custom Function since it can handle any length 
of phone number whether it is from the United States or the Netherlands.

Let's start right off with the formula:

Let(



[@NumbersOnly = Filter(Phone; "0123456789");
@NewNumber = Right(@NumbersOnly; Length(@NumbersOnly) - 1);
@NewFormat = Right(Format; Length(Format) - 1)];

Case(

not IsEmpty(@NumbersOnly);

Case(
Left(Format; 1) = "#";
Left(@NumbersOnly; 1) & PhoneFormat(@NewNumber; @NewFormat);
Left(Format; 1) & PhoneFormat(@NumbersOnly; @NewFormat)
)

)

)

Although this formula is quite a bit more complicated than the basic example covered 
earlier, it shares the same basic technique of a conditional statement to control the 
recursion. The name of the function is "PhoneFormat" and the two parameters are 
"Phone" and "Format". The first parameter holds the phone number that was entered 
into a field and the second parameter holds the format for the phone number. Phone 
formats are passed along in the parameter in the following fashion:

(###) ###-####

Pound signs represent where the digits are substituted and anything else is a separator 
which stays the same. So, a call to this Custom Function might look like the following:

PhoneFormat(Self; "(###) ###-####")

The first declaration in the Let function removes all non-number values using the Filter 
function. The second declaration removes the leftmost value from the Phone parameter 
and the third declaration removes the leftmost value from the the Format parameter. 
When we get down to the conditional statement, you'll understand why this is 
necessary.

The Case statement starts by testing whether the @NumbersOnly declaration is empty 
or not. Each time the formula recurses, one value is removed from the phone number till 
it finally becomes empty. In other words, the formula works through the phone number 
one digit at a time until there are none left. Actually, it works through the format value 
one character at a time, as you will see, but both are reduced in length each time the 
recursion occurs.



If the phone number still contains values, another Case statement is invoked, 
determining whether the value in the format is a pound sign or other character. If the 
value is a pound sign, the leftmost number is grabbed and placed in the memory stack 
to await the final result and the PhoneFormat function calls itself again minus one value 
from the phone number and the format string. If the leftmost value contains a character 
other than a pound sign, the leftmost formatting character is placed in the memory stack 
and a similar recursive call is made which removes one formatting character but keeps 
the phone number the same.

By the way, you should enter the call to the Custom Function on the field you want to 
format as an auto-enter calculation with the option to "do not replace existing value of 
field (if any)" unchecked. You might also want to add a validation calculation that checks 
the length of the numbers in the phone number against the number of pound signs in 
the format string to make sure the Custom Function can properly format the phone 
number.

Custom Function Gotchas

If you create an endless loop in a script, you have the option of canceling that script if 
you haven't turned off Allow User Abort. If you create an endless loop in a recursive 
Custom Function, FileMaker will automatically timeout after 10,000 recursions to 
prevent an endless loop. While this is a good thing in general, it can also be a significant 
limit in some recursive scenarios such as collecting a return-separated list of serial 
numbers for use in a multi-key relationship. In this case, you can increase the limit to 
50,000 recursions by using tail recursion which avoids using the memory stack to hold 
the result. Here's an example of tail recursion using our original basic recursion 
example:

Case(

Repeat > 1;

RepeatTextTail(
Text; 
Repeat - 1; 
Text & " " & Result
);

Result & Text

)

The call to this Custom Function might look like the following:

RepeatTextTail(Name; 5; "")



The first thing you want to notice is that there is a third parameter. This is where the 
result is built in order to avoid the memory stack limits. The reason tail recursion is 
limited to 50,000 recursions is because of the memory stack. While one recursive call is 
limited to 10,000 recursions, you can have up to five separate recursive calls for a total 
of 50,000 recursions.

Conclusion

The Custom Function examples in this article only brushed the surface of this topic but 
hopefully gave you a good idea of how important a copy of FileMaker Advanced can be 
to the efficiency of the development process. While no additional examples are likely 
needed to understand standard Custom Functions and reusing code, recursive Custom 
Functions open up a whole new way of working with calculations. For more examples of 
Custom Functions and especially recursive Custom Functions, take a look at the 
Custom Function library at:

http://www.briandunning.com/

John Mark Osborne is president and owner of Database Pros <www.databasepros.com>, offering the largest free 
FileMaker resource on the internet, training classes, commercial solutions and development services. John Mark is 
internationally recognized as the co-author of Scriptology, a speaker at the FileMaker Developer Conference and 
MacWorld conferences and an authorized trainer for the FileMaker Training Series developed by FileMaker, Inc. John 
Mark is certified for FileMaker 7, 8, 9, 10 and 11, having passed all five rigorous tests.

http://www.briandunning.com
http://www.briandunning.com
http://www.databasepros.com/
http://www.databasepros.com/

